Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Bis[N-phenyl(dicyclohexylthiophos-phinoyl)thiomethanamido-S, $\left.S^{\prime}\right]$ copper(II)

E. Horn, ${ }^{\text {a,b }}$ K. Kurosawa ${ }^{\text {b }}$ and E. R. T. Tiekink ${ }^{\text {c* }}$

${ }^{\text {a }}$ Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki 3058577, Japan, ${ }^{\text {b }}$ Department of Chemistry, Rikkyo University, Nishi-Ikebukuro, Tokyo 171-8501, Japan, and ${ }^{\text {c }}$ Department of Chemistry, The University of Adelaide, Adelaide 5005, Australia
Correspondence e-mail: edward.tiekink@adelaide.edu.au

Received 27 July 2000
Accepted 22 August 2000
The ligands in $\left[\mathrm{Cu}\left(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NPS}_{2}\right)_{2}\right]$ adopt an S, S^{\prime}-chelation mode leading to an S_{4} donor set which defines a square-planar geometry about the Cu atom, which lies on an inversion centre.

Comment

Phosphine ligands of the type $R_{2} \mathrm{PC}(\mathrm{S}) \mathrm{N}(\mathrm{H}) R^{\prime}\left(R, R^{\prime}=\right.$ alkyl, aryl) are known to adopt a variety of coordination modes involving one or more of the P, S and N donor atoms (Siasios \& Tiekink, 1996a). Oxidation of the P centre, leading to ligands of the general formula $R_{2} \mathrm{P}(Y) \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{H}) R^{\prime}(Y=\mathrm{O}, \mathrm{S}$ or Se), gives rise to different coordination possibilities. Antiarthritic activity has been displayed by gold complexes of the phosphine ligands (Whitehouse et al., 1998) and in this context, Cu complexes of these species have been investigated. The crystal structure of one of these, (I), is reported herein.

(I)

The molecular structure is shown in Fig. 1 and selected geometric parameters are collected in Table 1 . The Cu atom is located on a centre of symmetry and exists in a distorted square-planar coordination geometry defined by an S_{4} donor set. The greatest deviation from ideal geometry is manifested in the chelate angle of $95.85(4)^{\circ}$. The $\left[\mathrm{Cy}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{S})=\mathrm{NPh}\right]^{-}$ monoanion (Cy is cyclohexyl) coordinates via the thioamideS1 and phosphinoyl-S2 atoms, forming a five-membered $\mathrm{Cu}-\mathrm{S}-\mathrm{C}-\mathrm{P}-\mathrm{S}$ ring. There is significant puckering in the ring as seen in the $\mathrm{Cu}-\mathrm{S} 2-\mathrm{P} 1-\mathrm{C} 1$ and $\mathrm{S} 1-\mathrm{C} 1-\mathrm{P} 1-\mathrm{S} 2$ torsion angles of -23.2 (1) and $23.8(2)^{\circ}$, respectively. This feature of the structure may be traced to the tetrahedral
requirements of the P atom. The $\mathrm{Cu}-\mathrm{S} 1$ distance of 2.274 (1) \AA is shorter than the $\mathrm{Cu}-\mathrm{S} 2$ distance of 2.307 (1) \AA, consistent with significant thiolate character in the former bond. This conclusion is supported by comparing relevant geometric parameters in the complex with those in uncoordinated $\left[\mathrm{Cy}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{H}) \mathrm{Ph}\right]$ (Siasios \& Tiekink, 1994). Thus, the respective $\mathrm{S} 1-\mathrm{C} 1$ and $\mathrm{C} 1-\mathrm{N} 1$ distances in the complex of 1.726 (3) and 1.272 (4) \AA are significantly longer and shorter than 1.624 (2) and 1.317 (3) \AA, as found in the uncoordinated ligand. In contrast, the $\mathrm{P} 1-\mathrm{C} 1$ distances are equal within experimental error, i.e. 1.834 (3) cf. 1.846 (3) \AA. Nevertheless, the $\mathrm{P} 1=\mathrm{S} 2$ distance of 1.999 (1) \AA is elongated compared with 1.9495 (9) \AA in the free ligand. The lack of planarity in the five-membered ring, mentioned above, precludes extensive delocalization of π-electron density over these atoms.

The shortest non-H intermolecular contact of 3.614 (6) \AA occurs between C 17 and $\mathrm{C} 18^{\mathrm{i}}$ [symmetry code: (i) $-x,-1-y$, $-1-z]$. These arise from the partial overlap of two phenyl rings; however, there is no evidence for extensive π-stacking in the lattice. There are no close intermolecular interactions involving the Cu centres that might be expected for complexes of this type. An examination of the crystal structure reveals that symmetry-related cyclohexyl groups occupy positions above and below the Cu coordination plane preventing close associations.

The S, S^{\prime}-chelation mode of the ligand found in the present structure has two precedents in the literature, namely in octahedral $\left[\mathrm{Mn}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{S})=\mathrm{NPh}\right\}(\mathrm{CO})_{4}\right]$ (Antoniadis et al., 1982) and square-planar $\left[\mathrm{Ni}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{S})=\mathrm{NPh}\right\}_{2}\right]$ (Siasios \& Tiekink, 1996b). In contrast, an S, N-chelation mode is found in the structure of $\left[\mathrm{CpMn}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{S})=\mathrm{NPh}\right\}(\mathrm{CO})_{2}\right](\mathrm{Am}-$ brosius et al., 1984). Similar $-\mathrm{Cu}-\mathrm{S}-\mathrm{C}-\mathrm{P}-\mathrm{S}-$ fivemembered rings as seen in the title structure have been observed in the structures of $\left\{\left[\left(\mathrm{PhSCH}_{2}\right)_{3} \mathrm{P}=\mathrm{S}\right] \mathrm{CuX}\right\}_{2}(X=\mathrm{Cl}$ and Br) and $\left\{\left[\left(\mathrm{PhSCH}_{2}\right)_{3} \mathrm{P}=\mathrm{S}\right](\mathrm{CuI})_{2}\right\}_{2}$ (Fuchs et al., 1997), but these involve $s p^{3}$ rather than $s p^{2} \mathrm{C}$ atoms. Finally, squareplanar CuS_{4} geometries are known in related dithiocarbamate,

Figure 1
The molecular structure and crystallographic numbering scheme for (I). Displacement ellipsoids are shown at the 35% probability level (Johnson, 1976).
i.e. $\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CN} R^{\prime}\right)_{2}$ (e.g. Einstein \& Field, 1974; Manotti Lanfredi et al., 1996), and dithiophosphate, e.g. $\left\{\mathrm{Cu}\left[\mathrm{S}_{2} \mathrm{P}(\mathrm{O}-o-\right.\right.$ tolyl $\left.\left.)_{2}\right]_{2}\right\}$ (Yordanov et al., 1983), structures.

Experimental

The title complex was prepared by reacting a twofold molar excess of $\left[\mathrm{Cy}_{2} \mathrm{P}(\mathrm{S}) \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{H}) \mathrm{Ph}\right]$ (Siasios \& Tiekink, 1994) with $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ in an ethanol/dichloromethane mixture (1/1). The brown precipitate that was isolated was recrystallized by the slow evaporation of a dichloromethane solution of the complex at 295 K .

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NPS}_{2}\right)_{2}\right]$
$M_{r}=792.60$
Triclinic, $P \overline{1}$
$a=8.430$ (1) \AA
$b=10.305$ (3) \AA
$c=12.380$ (2) \AA
$\alpha=89.90(2)^{\circ}$
$\beta=82.31$ (1) ${ }^{\circ}$
$\gamma=68.62(1)^{\circ}$
$V=991.1(3) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.328 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=11.1-12.3^{\circ} \\
& \mu=0.871 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Prismatic, brown } \\
& 0.40 \times 0.20 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

AFC-7R diffractometer

$$
\omega-2 \theta \text { scans }
$$

$$
\begin{aligned}
& R_{\text {int }}=0.028 \\
& \theta_{\max }=30^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=-14 \rightarrow 0 \\
& l=-17 \rightarrow 17 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \quad \text { intensity decay: } 0.27 \%
\end{aligned}
$$

Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.709, T_{\text {max }}=0.917$
6080 measured reflections
5779 independent reflections
3059 reflections with $I>2.00 \sigma(I)$

Refinement

Refinement on F

H -atom parameters constrained
$R=0.044$
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.003\left|F_{o}\right|^{2}\right]$
$w R=0.031$
$(\Delta / \sigma)_{\max }<0.001$
$S=1.750$
3059 reflections
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.35 \mathrm{e}^{-3}$

214 parameters
All $\mathrm{C}-\mathrm{H}$ distances were constrained to be $0.95 \AA$.
Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1996); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997-1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: TEXSAN for Windows; software used to prepare material for publication: TEXSAN for Windows.

Table 1
Selected geometric parameters ($\mathrm{A}^{\circ},{ }^{\circ}$).

$\mathrm{Cu}-\mathrm{S} 1$	$2.274(1)$	$\mathrm{P} 1-\mathrm{C} 2$	$1.823(4)$
$\mathrm{Cu}-\mathrm{S} 2$	$2.307(1)$	$\mathrm{P} 1-\mathrm{C} 8$	$1.820(3)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.726(3)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.272(4)$
$\mathrm{S} 2-\mathrm{P} 1$	$1.999(1)$	$\mathrm{N} 1-\mathrm{C} 14$	$1.412(4)$
$\mathrm{P} 1-\mathrm{C} 1$	$1.834(3)$		
$\mathrm{S} 1-\mathrm{Cu}-\mathrm{S} 2$	$95.85(4)$	$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 2$	$107.6(2)$
$\mathrm{S} 1-\mathrm{Cu}-\mathrm{S} 2^{\mathrm{i}}$	$84.15(4)$	$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 8$	$107.6(2)$
$\mathrm{Cu}-\mathrm{S} 1-\mathrm{C} 1$	$109.0(1)$	$\mathrm{C} 2-\mathrm{P} 1-\mathrm{C} 8$	$108.8(2)$
$\mathrm{Cu}-\mathrm{S} 2-\mathrm{P} 1$	$102.47(5)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 14$	$123.9(3)$
$\mathrm{S} 2-\mathrm{P} 1-\mathrm{C} 1$	$110.2(1)$	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{P} 1$	$117.1(2)$
$\mathrm{S} 2-\mathrm{P} 1-\mathrm{C} 2$	$111.3(1)$	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	$131.0(3)$
$\mathrm{S} 2-\mathrm{P} 1-\mathrm{C} 8$	$111.1(1)$	$\mathrm{P} 1-\mathrm{C} 1-\mathrm{N} 1$	$111.9(2)$

Symmetry code: (i) $-x,-y,-z$.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1299). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Ambrosius, H. P. M. M., van Hemert, A. W., Bosman, W. P., Noordik, J. H. \& Ariaans, G. J. A. (1984). Inorg. Chem. 23, 2678-2685.
Antoniadis, A., Hiller, W., Kunze, U., Schaal, H. \& Strähle, J. (1982). Z. Naturforsch. Teil B, 37, 1289-1293.
Einstein, F. W. B. \& Field, J. S. (1974). Acta Cryst. B30, 2928-2933.
Fuchs, S., Angermaier, K., Bauer, A. \& Schmidbaur, H. (1997). Chem. Ber. 130, 105-110.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Manotti Lanfredi, A. M., Ugozzoli, F. \& Camus, A. (1996). J. Chem. Crystallogr. 26, 141-145.
Molecular Structure Corporation (1996). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997-1999). TEXSAN for Windows. Version 1.05. MSC, 9009 New Trails Drive, The Woodlands, TX 773815209, USA
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Siasios, G. \& Tiekink, E. R. T. (1994). Z. Kristallogr. 209, 885-891.
Siasios, G. \& Tiekink, E. R. T. (1996a). Malaysian J. Sci. Ser. B, 17, 1-18.
Siasios, G. \& Tiekink, E. R. T. (1996b). J. Chem. Soc. Dalton Trans. pp. 22692273.

Whitehouse, M. W., Cookson, P. D., Siasios, G. \& Tiekink, E. R. T. (1998). Metal-Based Drugs, 5, 245-249.
Yordanov, N. D., Alexiev, V., Maicek, J., Glowiak, T. \& Russell, D. R. (1983). Transition Met. Chem. 8, 257-261.

